Nonparametric Estimation over Shrinking Neighborhoods: Superefficiency and Adaptation1 by T. Tony Cai
نویسنده
چکیده
A theory of superefficiency and adaptation is developed under flexible performance measures which give a multiresolution view of risk and bridge the gap between pointwise and global estimation. This theory provides a useful benchmark for the evaluation of spatially adaptive estimators and shows that the possible degree of superefficiency for minimax rate optimal estimators critically depends on the size of the neighborhood over which the risk is measured. Wavelet procedures are given which adapt rate optimally for given shrinking neighborhoods including the extreme cases of mean squared error at a point and mean integrated squared error over the whole interval. These adaptive procedures are based on a new wavelet block thresholding scheme which combines both the commonly used horizontal blocking of wavelet coefficients (at the same resolution level) and vertical blocking of coefficients (across different resolution levels).
منابع مشابه
Nonparametric Estimation Over Shrinking Neighborhoods: Superefficiency and Adaptation
A theory of superefficiency and adaptation is developed under flexible performance measures which give a multiresolution view of risk and bridge the gap between pointwise and global estimation. This theory provides a useful benchmark for the evaluation of spatially adaptive estimators and shows that the possible degree of superefficiency for minimax rate optimal estimators critically depends on...
متن کاملOn Information Pooling, Adaptability And Superefficiency in Nonparametric Function Estimation
The connections between information pooling and adaptability as well as superefficiency are considered. Separable rules, which figure prominently in wavelet and other orthogonal series methods, are shown to lack adaptability; they are necessarily not rate-adaptive. A sharp lower bound on the cost of adaptation for separable rules is obtained. We show that adaptability is achieved through inform...
متن کاملOn Adaptability And Information Pooling in Nonparametric Function Estimation
It is well known that it is possible to achieve adaptation for “free” in function estimation under a global loss. It is unclear, however, why and how the adaptability is achieved. In this article we show that adaptability is achieved through information pooling. It is first shown that separable rules, which figure prominently in wavelet and other orthogonal series methods, lack adaptability; th...
متن کاملMinimax and Adaptive Inference in Nonparametric Function Estimation
Since Stein’s 1956 seminal paper, shrinkage has played a fundamental role in both parametric and nonparametric inference. This article discusses minimaxity and adaptive minimaxity in nonparametric function estimation. Three interrelated problems, function estimation under global integrated squared error, estimation under pointwise squared error, and nonparametric confidence intervals, are consi...
متن کاملRobust Nonparametric Estimation via Wavelet Median Regression
In this paper we develop a nonparametric regression method that is simultaneously adaptive over a wide range of function classes for the regression function and robust over a large collection of error distributions, including those that are heavy-tailed, and may not even possess variances or means. Our approach is to first use local medians to turn the problem of nonparametric regression with u...
متن کامل